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ABSTRACT

An experimental investigation was performed in the Calspan Corpora-

tion Hypersonic Shock Tunnel (48-inch Leg) using an O.OlO-scale 3SV Orbi-

ter Configuration 140A/B Model (51-0) to determine the effects of RCS jet/

flow field interactions on SSV aerodynamic stability and control charac-

teristics at various hypersonic Mach numbers and Reynolds numbers. Flow

field interaction data were obtained using pitch and roll jets at Mach

numbers of I0 and 20 at a unit Reynolds number of 0.85 x IO s per foot and

at a Mach number of I0 at a unit Reynolds number of 6.1 x IOs per foot.

In addition, direct impingement data were obtained at a Mach number of

zero with the test section pumped down to below I0 microns of mercury

pressure.
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I NTRODUCTION

A O.OlO-scalemodel of the Rockwell International Space Shuttle

Vehicle Orbiter (Configuration140A/B) was tested in the Calspan Corpora-

tion Hypersonic Shock Tunnel (48-inch Leg). Test dates were from Oct. 28,

1974 through Nov. 22, 1974.

The objective of the test was to determine the effects of RCS jet/

flow field interactionon SSV aerodynamic stability and control character-

istics at various hypersonic Mach numbers and Reynolds numbers.

Data were obtained for pitch and roll jets at Mach numbers of lO and

20 at a unit Reynolds number of 0.85 X IOs per foot, and at a Mach number

of 10 at a unit Reynolds number of 6.1 X IOs per foot. Direct impingement

data were obtained at a Mach number of zero with the test section pumped

down to less than lO microns of mercury pressure.

All control surfaces (elevons, body flap, speed brake, and rudder)

were set at zero deflection and an angle of attack of 30 degrees was set

for the entire test. Some of tt,emodel photographs in this report show

control surface deflections that are not zero, but all testing was con-

ducted at zero control surface settings. Yaw and roll attitudes were set

at zero for the entire test.

Data were obtained with RCS chamber pressure settings of 0 psi simu-

lating RCS off, and 170, 680, and 1540 psi, which match the model RCS jet

to tunnel free stream parameters of thrust ratio, momentum ratio, and

plume shape for the three test conditions to the q = 5 psf full-scale

free flight parameters. (See Table V).

i
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.l NOMENCLATURE

PLOT
SYMBOL SYMBOL DEFINITION

a calibration constant, Ib/mv or in-lb/mv

A axial force, lbs. ""

bw BREF wing span; lateral reference length, in

LREF wing MAC length, longitudinalreference length, in.

Cp specific heat at constant pressure, ft-lbs/slug-°R

A

CA CA axial force coefficient,

Ccp C(CP) cavity pressure coefficient Pcav " P-' qm

C_ CBL rolling moment coefficient,
q_ bw SW

Cm CLM pitching moment coefficient, q.Sw_

N

CN CN normal force coefficient,

nc

Cn CYN yawing moment coefficient,q, SW"bw

Pm " P-
Cp CP pressure coefficient, q.

Y
Cy CY side force coefficient, ---_..

C_ (see Data Reduction Section)

C_ C* (see Data Reduction Section

,t-_-_ SQRTC* (see Data Reduction Section)

_ 71
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I
NOMENCLATURE(Continued)

PLOT
SYMBOL SYMBOL DEFINITION

vertical distance from balance center to model
MRC, inches

Ho H(O) total enthalpy, ft-lbs/slug, Ho was multiplied
by 10-6 for data display

HW H(W) enthalpy at wall conditions, ft-lbs/slug, Hw was
multiplied by 10-6 for data display

L/D lift to drag ratio, CL/CD

rolling moment about the balance center, in-lbs.

_D Orbiter reference body length, inches

m pitching moment about the balance center, in-lbs.

Mi M(1) incident shock Mach number

M_ MACH Mach number

MRC MRP model moment reference center (Xo, Yo, Zo)' in.

n yawing moment about the balance center, in-lbs.

N normal furce, Ibs.

P pressure, psia

Pc PCRCS RCS Plet_umChamber Pressure, Fsia

Pmj PMj pressure measured on ;,_delat tap number
j : 1,2,3,4, psia

e

Po P(O) stagnation pressure, psia

P'o PITOT stagnation pressure behind a normal shock, psia

PTS P(TS) pressure in the test section before a test,
microns

1977003190-012



I NOMENCLATURE (Continued)

PLOT
SYMBOL SYMBOL DEFINITION

P® P freestream static pressure, psia

q® Q(PSI) freestream dynamic pressure ,.

_S/T inverse RCS thrust coefficient

Re/ft RN/L Reynolds nun,herper foot, p® U® I Re/ft was

multiplied by lO-6 for data display

P® U®_b Re was multiplied byRe_ REFTL Reynolds number,

lO-6 for data display

Scav. model reference cavity area, in.2

SW SREF model wing reference area, in2

TH RCS nozzle thrust, lb.

T tem_._rature,°R

To T(O) total temperature, °R

TW T(W) telnperatureat wall conditions, "R

T" (See Data Reduction Section)

T* T* (see Data Reduction Section)

T, T freestream static ten_)erature,°R

longitudinal distance between the balance
center and the model MRC, inches

Uj RCS nozzle exit gas velocity, ft/sec

U,.o U free_tream velocity, ft. per sec.

spanwlse distance between the balance center
and the model MRC, inches

9
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NOMENCLATURE(Continued)

PLOT
SYMBOL SYMBOL DEFINITION

V* VBAR (see Data Reduction section)

V_ VLBAR (see Data Reduction section) _..

Xcp/_ b XCP/L normal force center of pressure 0.65 (Cm)(_),
percent model length " CN _b

_i ith component balance capsule output, i : 1,2,...6,
mv

XMRc XMRP longitudinal location of MRP, in. Xo Orbiter
longitudinal station, in.

Xo XO Orbiter longitudinal station, in.

Y side force, Ibs.

YMRC YMRP lateral location of MRP, in. Yo

Yo YO Orbiter lateral station, in.

ZMRC ZMRP vertical location of MRP, in. Zo

Zo ZO Orbiter vertical station, in.

ALPHA model angle-of-attack, degrees

y specific heat ratio

6BF BDFLAP body flap deflection, degrees

6e ELEVON elevon deflection (_eL +_eR)/2, degrees

6r RUDDER rudder deflection, degrees

_SB SPDBRK speedbrake deflection, degrees

_,_ MU freest_eam absolute viscosity coefficient, slugs/
ft-sec. "_ was multiplied by 108 for data display

p_ RHO freestream density, slugs/ft3; o_ was multiplied
by 106 for data display

I
I
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"] NOMENCLATURE (Concluded)

PLOT
SYMBOL SYMBOL DEFINITION

o SIGMA standard deviation

PHI angle of roll, degrees -,.

BETA angle of sideslip, degrees

SUBSCRIPTS

l driven gas initial conditions

4 denotes region behind reflected shock

AF data based on tunnel airflow calibrations

c corrected

cav. cavity

cp center of pressure

E data based on estimated values for q® (ref. 14)

i incident shock in driven gas

L left

m model

0 nozzle supply stagnation conditions;
Orbiter reference system

o" stagnation conditions behind a normal shock

R right

ref. reference

W wing reference; conditions at wall

® freestream conditions

j static pressure tap number, RCS nozzle exit
condition

( II
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REMARKS

Test Summary

T_st 0A93 activity at the Calspan Hypersonic Shock Tunnel commenced

on Oct. 28, 1974 and was completed Nov. 23, 1974. Installation of the

sector, "E" nozzle, model, RCS system, and Schlieren system required six

days; check-out of the balance in the tunnel took one day; check-out and

nodification of the RCSsystem took seven days; and testing was conducted

for 5 days. A total of 152 hours of testing activity (equivalent to occu-

pancy hours) were used to obtain 15 runs, eleven of which yielded data.

Precision of Data

Stagnation enthalpy and the test section free stream conditions were

calculated using the thermodynamic properties of real air, the incident

shock wave velocity, and the nozzle supply pressure. The speed of the in-

cident shock wave was measured to within ±I percent. Eased on the agree-

ment of pressure transducers, the nozzle supply pressure is considered

accurate to within ±3.5 percent. Dynamic pressure was determined from a

linear correlation of measured model pressures and forces (see Data Reduc-

tion section); therefore, one would expect the most probable error i_

dynamic pressure to reflect the accuracy of these measurements, which is

±5 percent and ±3 percent, respectively. The resultant most probable

error in dynamic p_essure is calculated as ±5.8 percent. The test section

Mach number, which is in turn dependent upon the ratio of Po/Po and qJPo,

is then estimated to be accurate to ±2 percent.

1
12
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_] REMARKS (Continued)

Model attitude was set with an inclinometer at the desired angles of

pitch and roll, and are estimated to be within +O.l degree.

On the basis of calibration repeatability and on the consistency and

the repeatabilityof the pressure data, it is estimated that these data

have a "most probable error" of +5 percent.

Uncertainties in force coefficientsarise from errors in q., refer-

erence area, and balance loads. The error in q® is covered in the Data

Reduction section. If one assumes a negligible error in the reference

area, then all that is needed to obtain the overall accuracy of the force

data is a knowledge of the precision of measuring the balance loads. On

the balance output, there will be an incremental error based on the capa-

bility of the balance to read a given load. This type of uncertainty

would put on the data plot a band which would be independentof angle of

attack. These incrementalerrors are obtained by calculating the 3a dev-

iation between applied and calculated calibration loads. (For a normal or

Gaussian distribution of errors, lo contains 68.3 percent of the data

compared to 99.7 percent of the data for 3a; therefore, 3a is considered

more applicable here.) The calculated loads were determined by using the

calibration constants and the balance output data produced by the applied

loads.

For the static calibrations used in the program, the results are as

follows:

i 13
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REMARKS (Concluded)

Percent of

Component 3o Deviation Value Full-Scale

N ± .696 pound 0.7

m ±1.254 inch-pounds 2.1 -.

Y ±2.325 pounds 3.7

n ±2.010 inch-pounds 4.7

2 ± .243 inch-pound 2.0

A ± .198 pound 0.5

14
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1 CONFIGURATIONS INVESTIGATED

The model for these tests was a O.OlO-scale replica of the Rockwell

InternationalSpace Shuttle Vehicle Configuration 140A/B, designated

Model 51-0. SSV Orbiter Configuration 140A/B is composed of the configu-

ration control drawing VL70-OOOI40A body and the VL70-OOOI40Bwing. A

three-view drawing of the orbiter configuration is shown in figure 2a.

The metric orbiter components are constructed of AZ31B magnesium

and consist of the following items: fuselage, wing, vertical tail, orbi-

tal maneuvering system (OMS) pods, simulated lower orbiter main engines,

speed brake, and body flap. All control surfaces (elevons, body flap,

rudder, and speed brake) remained in their undeflected positions for the

entire test.

The aft end of the OMS pods have been modified to allow installation

of simulated RCS nozzles. A plenum for supplying air to these nozzles is

mounted at the rear of the orbiter fuselage, between the RCS nozzles.

Two RCS nozzle blocks were used, each with 2 nozzles. RCS plenum and

nozzle blocks are non-metric, and are clamped on the sting, aft of the

model, with a gap of 0.30-inch between the metric OMS pods and non-metric

RCS nozzle blocks. Figure 2b shows nozzle block geometry.

Nomenclature below were used to designate the orbiter model compo-

nents. 01 = B26 C9 E26 F7 Ml5 N76 R5 V8 Wll6

(Non-metricRCS nozzle blocks are plenum-mountedat base of
orbiter.)

02 = 01 with non-metric RCS nozzle blocks, plenum, and supply

pipe removed from base of orbiter.

15I
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CONFIGURATIONSINVESTIGATED(Concluded)

The orbiter components are defined as follows:

Sjmbol Component Configuration Lines Drawing Model Drawinq

B26 Body 140A/B VL70-OOOI40A VFI09558 (AEDC)
VL70-O00193 VFI09560 (AEDC)

R80054 (Lockheed)

C9 Canopy 3A Same as B26 VFI09558 (AEDC)

E26 Elevon 140B VL70-OOOI40B VFI09559 (AEDC)
VL70-O00200

F7 _ody Flap 3A VL70-OOOI40A VFI09559 (AEDC)
VL70-000145 SSA01247 (AEDC)

MI5 OMSPod 3A VL70-000145 VFI09561 (AEDC)

N76 Lower Main 3A VL70-.OOOI40A SAA01247
Engines VL70-305106A

R5 Rudder 140A/B VL70-000095 VFI09559 (AEDC)

V8 Vertical 3A VL70-OO(II40A VFI09559 (AEDC)

WII 6 Wing 140B VL70-OOOI40B VFI04559 (AEDC)
VL70-O00200 VFI09560 (AEDC)

RCSnozzle blocks are defined as follows:

S__mbol Definition

N43 Twin left side pitch down RCS nozzles sized to simulate the
prototype 3A configuration (VL70-OOOI4OA) aft RCSpitch
engines at q_ = 5 psf and M_ = 29.0 with a wind tunnel Mach
number of 10.3. Nozzles are canted 12° aft and 20° outboard.

N44 Twin right side pitch up RCS nozzles, sized the same as N43.
Nozzles are not canted.

Model component dimensional data are given in table III. Reference 12
and 15 give additional model information.

I
i
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I INSTRUMENTATION

Force data were measured with the Calspan 1.312-inch diameter six

component "E" balance. This balance is a piezoelectric balance using six

lead zirconium titante ceramic load cells mounted to a non-metric platform,

which is integral with the sting support. A sketch of the balance is shown

in figure 2e. Accelerometerswere installed in the model to form an accel-

eration balance which, when combined with the force balance, resulted in

an internally compensated balance system. The accelerometer balance con-

sists of six individual accelerometers (equal in number to the number of

force and moment components) mounted individuallywithin the model. Their

locations and axes were selected for maximum imposed acceleration; i.e.,
\

at model extremities for pitch, roll, and yaw. An analog compute,"was

used to combine signals from the balances, six force beams (3 normal, 2

side, and l axial) and the six accelerometersto yield internally compen-

sated electrical outputs, directly proportional to the applied forces and

moments.

A grounding (fouling) circuit was provided between the sting and the

metric orbiter main propulsion engine nozzles.

The model cavity and pitot pressures were measured by a system de-

veloped to meet the particular requirements of shock tunnel testing. The

pressure transducersemploy piezoelectriccrystals, and their small size

permits installationwithin the model. The transducers used in this test

have a dual-elementfeature which reduces acceleration effects to an in-

dicated pressure of .0003 psi/g. Pressures as low as .0008 psi may be

, 17
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INSTRUMENTATION(Continued)

accurately measured by these transducers. Proper shielding of the elements

precludes temperature effects in the short test time.

Four locations on the bottom surface of the orbiter body and wing

were instrumented with Calspan piezoelectric pressure transducers. These

transducers are acceleration compensated and were located on the model as

specified below.

PRESSURE PRESSURECOEFFICIENT LOCATION
X-DUCERNO. NUMBER ORBITER COORDINATES,INCHESMODEL

SCALE

Pml CPI LOWERWING SURFACE Xo = II.887

Yo : 2.810

Pm2 CP2 LOWER WING GLOVE Xo = 10.782

Yo = 1.821

Pm3 CP3 LOWER FUSELAGE Xo = II.887

CENTERLINE (AFT) Yo = 0.000

Pm4 CP4 LOWERFUSELAGE Xo = 4.000

CENTERLINE(FORWARD) Yo = 0.000

Figure 2c shows the pressure locations on the model.

Orbiter base pressure was not measured on this test. However, the

balance cavity pressure was measured using a Calspan piezoelectric pres-

sure transducer.

The RCS plenum chamber was instrumented to monitor plenum wall pres-

sure. This pressure was measured using PCB Model II3MOI transducer sup-

plied by Calspan.

I
18
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_I INSTRUMENTATION (Concluded)

The Schlieren system used was of the double-pass collinated type

with the knife edge horizontal. This system was used to provide the sen-

sitivi_y needed to obtain photographsof shock waves during low density

runs. Schlieren photographs were taken during most runs.

The outputs from the pressure transducers and the force-balance sys-

tem were recorded on the magnetic drum of a Navigational Computer Corpor-

ation MCL-IO0 data acquisition system (NAVCOR),which samples the data

from each of 48 channels every 50 microseconds. The data from the drum

are transferred to a Brush recorder for immediate examination and prelimi-

nary calculations. The average voltages obtained from the Brush recorder

were subsequently punched on cards for reduction on an IBM 370-168 com-

puter.

19
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TEST FACILITY DESCRIPTION

The basic components of the 48-inch Hypersonic Shock Tunnel (HST)

are shown in figure 2d and described in reference I. The tunnel employs

c constant-area shock tube with an 8-inch inner diameter. The driver tube

is 20 feet lo_g and is externally heated by a resistance heater to temper-

atures of 1460°R. The driven tube is 50 feet long. The driver gas is

generally a mixture of helium and nitrogen with a maximum helium purity

of lOO% while the driven g_s is generally air. Steady-flow test times of

duration sufficient to permit accurate measurement of the various para-

meters of interest are achieved with the tailored-interfacetechnique. A

basic discussion of shock tunnel operation technique can be found in ref-

erence I.

Three axisymmetric nozzles are available to expand the test gas to

high velocities:

Exit Diameter Test Section

Nozzle Ty_p_e _in Inches Mach Number

A Contoured 24 5.5 to 8

D Contoured 48 I0 to 16

E I0½" Semi- 48 9 to 20
angle cone

The "E" nozzle was used for this program to obtain the highest Mach

number possible. The nozzles employ replaceable throat inserts of dif-

ferent diameters so that with the particular nozzle, the test Mach number

can be varied. Test air passes downstream of the test section into a

receiver tank of a size sufficient to maintain the desired flow for dura-

!
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_I TEST FACILITY DESCRIPTION (Concluded)

tions of 5 to 13 milliseconds. All nozzle_ have been calibrated using

pitot-pressuresurvey rakes over the Mach number range indicated.

The test section is equipped with two 16-inch diameter Schlieren

windows mounted a short distance aft of the nozzle exit.

21
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TEST PROCEDURE

The force balance system was flrst statically calibrated by hanging

a series of weights on the balance and recording the force capsule vol-

tage outputs. The model was then mounted on the balance, and an inertial

compensation procedure, in whi:h the model underwent known translational

and rotational accelerationsabout three chosen axes, was conducted. Re-

sultant signals were used as inputs to an analog computer. By combining

the force balance and accelerometersignals, the computer supplied as

outputs to the recording system the values for the aerodynamic forces and

moments. Once the balance was c_,,,pensated,a dynamic check calibration

was made of the complete mode] balance system to verify the accuracy of

the compensation. This procedure consisted of rapidly releasing known

loads from the model and recording six-componentacceleration-compensated

balance data.

Pressure transducerswere calibrated (i.e., voltage output vs.

applied pressure) after installation in the model. The voltage variation

of the transducer is linear over the range of pressure normally encoun-

tered during testing. This calibration, in conjunctionwith estimated

values for the model pressures to be experienced during the actual test,

provided the basis for adjusting the gain of the data recording system to

achieve maximum "rpadability". The detailed calibration data are kept on

file at Calspan.

The RCS nozzle blocks used 1or this test were calibrated in tne

Rockwell InternationalRocketdyne Division Rocket Nozzle Test Facility

22
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TEST PROCEDURE (ConLinued)

prior to the test. Procedures used for these calibrations are described

in reference 13. Calibration curves of vacuum thrust versus char,._er

pressure are given in figure 4a.

The model was installed on the Calspan 1.312-inch diameter six.com-

ponent "E" balance assembly supported by the Calspan I-inch diameter

H61-I042-5 sting. The sting was attached to the light load sectoF using

vibration isolatingpads.

A quick-acting solenoid-actuatedVdlcor valve was mounted on a

bracket in proximity to the base of the model to supply high pressure air

to the RCS system. The supply line for this valve was attached to a lO-

inch diameter plenum tank mounted in the tunnel receiver tank, aft of the

model. Prior to each RCS run, the tank was loaded Co the RCS operating

pressure from the Ca]span high pressure uir system. Plenum pressure was

set with either a U.S. Gage 300 or 3000 psig gage, depending on the pres-

sure level. During each RCS run, firing of the Valcor valve was synchro-

nized with operation of the tunnel so that the peak RCS pressure coin-

cided with the usable test time.

It was necessary to solve unexpected installation, instrumentation,

az_doperational problems before usable data cound be obtained. Problems

which were peculiar to plume simulation in a short duration run type of

hypersonic faci]ity are enumerated below:

I. The Valcor valve (for RCS ooeration) was moved from the sting

to a bracket mounted on the floor, next to the sting. This isolated the

23
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TEST PROCEDURE(Concluded)

valve and plumbing from the sting-balance system, the only connection be-

tween the two being a fley line, and reduced the mechanical shock and

electromagnetic interference effects of the balance caused by the valve.

2. Electronlc _ters were installed in the Navcor computer to _

eliminate the large noise signals caused by firing the Valcor valve.

3. Synchronization of RCSsystem peak pressure with tunnel run

time was accomplished by finc-tun_nq the inputs JntJ the delay generator

in the Valcor valve firing system. Several check runs were made to

determine the proper timing delay.

24
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DATA REDUCTION

With the exception of q® and P'o, standard Calspan data reduction

methods were used to compute force and moment coefficient data, center of

pressure locations, and the remaining test section conditions. Reference

3 describes the Calspan standard data reduction methods used for the Hyper-

sonic Shock Tunnel

From the model-balance system static calibration data, a matrix was

computed that relates the applied loads and moments to the balance outputs,

accounting for all interactions and the location of the specified moment

reference center. Aerodynamic forces and moments were then computed from

the matrix, which for the six component balance has the form:
f

N Xl

X2

= aij Xz

Xc

where X = balance capsule output in millivolts

a = calibration constant (Ib/mv or in-lb/mv)

N = normal force, Ibs.

m = pitching moment about the balance center, in-lbs.

A = axial force, Ibs.

Y = side force, Ibs.

--rolling moment about the balance center, in-lbs.

n = yawing moment about the balance center, in-lbs.

25I
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I
DATAREDdCTION(Continued)

In addition, the pitching, yawing and rolling moment coefficients

about the model moment reference center and axial force corrected for

model cavity pressure were computed from the following enuations:

• mc = m + G Y + h Ac (I) where: -'

nc = n + _ Y + v Ac (2) u = -0.519 inch

_c = _ + _ Y - _ N (3) h = +0.250 inch

Ac = A + Scav. (_av.-P_) (4) v = 0.0 inch
Scav. : 4.5 in 2

The pressure transducer3 measure the difference between the initial

test section pressure and the _pplied iucal pressure. The initial pres-

sure is of the order of 5 microns _nd is added to the measured pressure

to obtain the absolute model pressure. The local pressure coefficient

Cp was then computed.

The test conditions of pressure, temperature and Reynolds number are

computed by assuming isentropic expansion of the test gas from the con-

ditions behind the reflected shock in the driven tube to the test section

Mach number. The flow is expanded sufficiently so that the air in the

test section is cool enough to obey the perfect gas laws.

The stagnation enthalpy and temperature of the air behind the

reflected shock is determined from

Ho = HI (H4/H I) (5)

and To = T1 (T4/TI), respectively (6)

where H4/H1 and T4/T 1 are functions of Ui, the incident shock velocity.
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_I DATA REDUCTION (Continued)

(References4-6). Ui is obtained by measuring the time taken by the

shock wave to pass between two stations in the shock tube. Hl is taken

fron:reference 7. Free stream static temperature is obtained from

Ho
T_ - (I + Y - 1 M_2)y-I (7)

Cp 2

Free stream pressure is calculated using

P® = Pp Po [l + ]L_M_ ] -I

where:

P/Po)real ]PP = (P/Po)perf.] (8)

is the real gas correction to the ideal static-to-totalpressure ratio as

described in reference 8. The source data used in this technique are

references 7 and 9.

Values for absolute viscosity (u) used to compute Reynolds numbers

were obtained from reference lO for temperatures below 500°R.

Stagnation conditions behind a normal shock in the test section are

based on the data of reference 9. The balance of the primary test sec-

tion properties is based on perfect gas theory.

The normal procedure used to determine free-streamMach number is by

a correlationof Mach number with reservoir pressure and temperature

determined from previous airflow calibrations (referencel). These air-

flow calibrationsconsist of measured lateral surveys for a range of

' 27
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DATAREDUCTION(Continued) ''

tunnel operating conditions. Free-stream Mach number used in the corre-

lation is determined from the average ratio Po/Po for each airflow cali-

bration run (reference 3.) Dynamic pressure is then calculated from:

q = _Y__p_M22

During test OAII3 (same model, but without RCSJet Simulation; see

reference 14), coefficient data scatter as high as ±20 percent was noticed

at some test conditions. Since Xcp/L b and L/D did not show this scatter,

it was concluded that the coefficient scatter was caused by insufficient

knowledge of dynamic pressure. Although a pitot probe was mounted in the

test section, the high model angle of attack required that the probe be

mounted too far from the model to provide reliable values of dynamic

pressure. It was subsequently discovered that the forward model pressure

(Pm4) correlated very well with normal force. Correlations of Pm4, normal

force, and estimated dynamic pressure were then made using an iterative

procedure. This same procedure was used for 0A93, and the results are

shown in figures 4b, 4c, and 4d.

This procedure is based upon the assumption that viscous interaction

effect on normal force is on the order of I% and can be ignored. There-

fore, normal force is assumed to be linear with dynamic pressure. In

addition, Pm4 is located on the model such that it is free from flow

separation and control surface deflection effects, It can also be shown

that test data fo_ Pm4 is linear with the estimated value for dynamic

pressure used for data reduction. (See figure 4d.)

28
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I DATA REDUCTION (Continued)

Test Conditions were then obtained as follows:

I. Dynamic pressure for a given run was calculated from the ratio

of Pm4/q_ using the measured Pm4 for that run.

2. Pitot pressure was calculated from the theoretically established

ratio of Po/q_ used in reference 3.

3. Free-stream Mach number and the other test conditions were then

calculated from the ratio Po/?o, using the measured values of reservoir

conditions for that run and equation_ 5 through 8, as discussed above.

For a detailed discussion of the theoretical principles and experimental

substantiation for deriving the estimJted aynamic pressures_ see reference

14.

Other equations and methods special to this test are outlined below.

I. Calculation of viscous parameter V* (Rockwell Method)

T* T(W) + (I + 0.2 M2)[O.31462(sin2_) + 0.18538]
T_ -0.5 T.

r, = F_T*_I/2 [ T®+ 198"6]_ LT ] T* + 198.6

M. _C_

29
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DATA REDUCTION(Concluded)

2. Calculation of viscous parameter V_ (Langley Method)

T" T____
- (0.4_8 + 0.532 + 0,039 M_)

T T
din,.

I) iC_ -_- 5/9T"+122.1x 10"(9/T_?l

The following reference dimensions and constants were used to com-

pute force and moment coefficient data and center of pressure locations.

These values are shown in figure 2g.

Symbol Full Scale Model Scale

bw 936.7 in. 9.367 in.

c 474.8 in. 4,748 in.

_b 1290.3 in. 12.903 in.

SW 2690.0 ft.2 0.269 ft.2

XMRC I076.7 in. I0.767 in.

Scav 4.50 in.2

u -0.519 in.

v O.O in.

YMRC 0.0 in. 0.0 in.

0.25 in.

ZMRC 375.0 in. 3.75 in.

i
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"J DISCUSSION_F RESULTS

Interaction effects induced by the RCS plume were obtained by taking

the difference in force and moment coefficients between RCSon and RCS

off (Pc = O) runs. This was necessary because the relatively short run

time did not allow time to obtain steady balance readings with the jet

off and then turn the jet on, wait for the flow to reestablish and obtain

another steady level. The Run Summary presented in table Vll identifies

the runs at each of the three test conditions, which may be paired to

obtain RCS interaction effects. This table is annotated to assist the

data user in interpreting the data.

Fifteen runs were made during the test; eleven yielded data. RCS

timing problems were experienced in the Mach 19.4 runs 2 and 4; because

these runs were repeated (runs 3 and 5), runs 2 and 4 should be treated

circumspectly, if used at at1. Run 7 is a repeat of the Mach 19.4, RCS

on run 5 for the purpose of determining data repeatability.

On runs 6 and 13 amplifier gains on some components, as noted, were

set too low. The resulting low amplitude signals impaired the resolution

and thus the accuracy of the associated coefficients by a factor of 2, or

more, greater than stated in the discussion on precision of data.

Test results are plotted in figures 6 through 9 with results from

0A82 (Langley 31-inch CFHT). Interaction effects are plotted as a func-

tion of the inverse thrust coefficient, _S/T, for an angle of attack of

30 degrees.

Figures 6 and 7 compare 0A93 test results for the right hand up-
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DISCUS310NOF RESULTS(Continued) .I

firing jets at M = I0 and 20 and Re_ : 0.09 x 106 with 0A82 test results

for M = I0 and Re_ : 1 x 106 . These data indicate that there are negli-

gible Mach number and Reynolds number effects on RCS/aerodynamic inter-

action in the hypersonic entry regime. The normal force interaction data

are scattered, but this has been typical of all RCS effects tests to date.

Left hand down-firing jet test results are presented in figures 8

and 9. These figures compare 0A93 test results at M = I0 and 20 for

Re_ : 0.09 x 106 and Re_ : 0.7 x 106 with 0A82 results at M : I0 and

Re_ : 1 x 106 . There is more data scatter in these results than for the

upfiring jet data and it is impossible to conclude whether a Mach number

or Reynolds number effect exists. Again, the normal force data have the

most scatter.

Even though the test data were not corrected for source flow, no

effect is expected on the interaction results because they are obtained

as a difference between RCS on and RCS off runs, thereby cancelling the

source flow effect.

RCS-Off Aerodynamic Data

Although obtaining absolute aerodynamic coefficients was not the

intent of this program, it is instructive to review the RCS-off coeffi-

cient data obtained in the conical nozzle. RCS-off pitch pl_ne data are

plotted as a function of the viscous interaction parameter, V_, in figure

I0. This plot compares the two Calspan tests in the 48-inch HST (OA93-

conical nozzle and OAll3-contoured nozzle) and the 0A82 test data _rom
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' DISCUSSION OF RESULTS (Concluded)

the Langley 31-inch CFHT. Test 0A93 data are plotted with and without a

conical flow correction. The correction was determined analytically using

Newtonian impact pressure incFements integrated over a flat plate model

of the orbiter planform. The axial force correction is zero for this

method. Agreement between axial force data from the 0A82 Langley and

OAll3 and 0A93 Calspan tests is very good.

While the corrected normal force and pitching ,;iomentdata move

closer to the parallel flow (contoured nozzle) data of tests 0A82 and

OAll3, a discrepancy still exists. The corrected normal force data are

4 to 8% below the faired values and the corrected pitching moment is

0.002 to 0.016 above the faired values. No further attempts were made to

obtain a more accurate correction.

" 33
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TABLE I

TEST" 0A93, CAL I8_-_0 ] ,pATE: 11-PP-%

TEST CONDITIONS i

REYNOLDSNUMBER DYNA&'JCPRESSURE STAGNATIONTE!_PZRATURF
EACH NUMBER

(per foot) (pounds/sq.inch) (depre(,sFailre_,_ed)

10.75 0.607 X 106 _ 1_.958 ._ 3518

9.60 0.084 X i06 0.685 5363

-- 19.77 0.086 x 106 0.158 h9_ h

BAL.A_C[UTILIZE{J. Calspan "E" Low-Load Ba]mnce

COEFFICIE'_T
CAPACIIY. ACCUkACY IOL[.I{ANCL*

t_F _ +_ Of measured load

_r _;_._ib,. _ "
AF hl.O ibs. .___ "

[,_ 60.9 ln. -lbs. +_3_ "

R'_ 12.0 In.-Ibs. +_% "

y,., h3. I In. -Ibs. _ "

,c;v'.'{'_I',• Zee Data Reductlon Sectlon
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TABLE III MODEL DIMENSIONAL DATA

I
MODEL COMPONENT BODY - B26

GENERAL DESCRIPTION Configuration 140A/B orbitec fuselase

NOTE: B26 is identical to B24 except underside of fuselage has beep

refaired to accept W ll6.

MODEL SCALE: 0.010 MODEL DWG: SS-A00147, Release 12 --

DRAWING NUMBER, VL70-000143B, -000200, -000205, -006089, -000145

VLT0-000140A, -000140B

DIMENSIONS FULL SCALE MODEL SCALE

Length (OML: Fwd Sta. Xo=235),In. 1293.3 12.933

Length (IML: Fwd Sta. X° =238),!n. 1290.3 12.903

Max Width(At X = 1528.3), In. 264.0 2.640
O

Max Depth (At Xo = 1464), In. 250.0 2.500

Fineness Ratio 0.264 0. 264

Area - Ft 2

Max_ Cross-Sectional 340.88 O. 034

Plan form

Wetted

Base

38
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TABLE Ill(Cont'd)

1
_t0DEL COMPONENT: CANOPY - C n

GENERAL DESCRIPTION : Configuration 3A. Canopy used with fuselage

_Bz6.

e,b,

MODEL SCALE: 0.010 MODEL DWG: SS-A00147, Release 12

DRAWINGNUMBER, VL70-000143A

DIMENSIONS' FULL SCALE MODEL SCALE

Length(X =434. 634-578) 143.357 1.434O

MaxWidth (At X ° = 513. 127) I$Z,41_ 1.524

Max Depth (At X = 485.0) Z5.000 0.Z50o

Fineness Ratio

Area

Max. Cross-Sectional

Planform

Wetted

Base

I - - -t ,_ J
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-_:=Rev. 7/19/74

TABLE iii(Cont'd)

MODELCO,,PO,_ENT: ELEVON - E2,6

GENERALDESCRIPTION: Configuration 140A/B orbiter elevons.

Da_a are for one side.

MODEL SCALE: 0. O] 0 MODEL DWG: _.-_ A00148. R_]_¢ase 6 "

DRAWlrIG NU_,BER: VLT0-0002001 -006089, - 00609 2

DIMENSIONS: FULL-SCALE MODELSCALE

:'.:Area - Ft 2 205.25 O. 0205

"::Span (equivalent), In. 346.68 3. 467

_',"Inb'd equivalent chord , In. I15.3 1. 153

;:: Outb'd equivalent chord, In. 55. 1886 0,552

Ratio movable surface chord/
total surface chord

* At Inb'd equiv, chord 0 214 O.214

* At Outb'd equiv, chord 0.400 0.400

Sweep Back Angles, degrees

Leading Edge O.O0 O.O0

Tailing Edge -I0,056. -I0.056

Hingeline O. O0 O. O0
(Product of area & ¢)

:::AreaMoment (_.x_j_txkic_t" 1518.271 0,0015

:::Mean Aerodynamic Chord, In. 88. 777 0.888

4O
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TABLE Ill (Cont'd)

MODEL COMPONENT : BODY FLAP - F 7

GENERAL DESCRIPTION '. Configuration 140A/B orbiter body flap

MODEL SCALE: 0.010 MODEL DWG: SS-A00147, Release 12

DRAWING NUMBER . VL?O-OQQI4OA. -00014_

DIMENSIONS _ FULL SCALE MODEL SCALE

Length(X =1520 to X =1613),In. q3.000 0.9300 0

Max Width, In. 262, 00 2.620

Max Depth (X o = 1520), In. 23. O0 O. 230

Fineness Ratio

Area - Ft 2

Mov. Cross-Sectional

Planform 142.6 O. 014

Wetted

Base 41. 847 0.0042

Model dim. measured from model sta. 15.20
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TABLE Ill(Cont'd)

MODEL COMPONENT , OMD POD - MI=
_J

GENERAL DESCRIPTION ' ConfiGuration 3A - Modified RCS simulation

with nonmetric RCS engine housing and nozzles. Same _eometry a_

M_forward of Station X = 150P.
l O

MODEL SCALE: 0.010

DRAWING NUMBER. , VL70-000140A, -000145

DIMENSIONS ' FULL SCALE MODEL SCALE

Length (OMS Fwd StaX =1233.),_ Z. 690o

MaxWidth (At X = 1450.0), In. _4_5 0.945
O

Max Depth(At X o = 1493.0), In. 110.0 1.100

Fineness Ratio .....

Area

Max. Cross-Sectional

Plan form

Wetted

Base

42

1977003190-046



I

/

I TABLE III (Cont'd)
-t

MODEL COMPONENT: NOZZLES - N43

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down

control to simulate reentry.

Ira.,.

MODEL SCALE: 0.010

DRAWING NO.: SS-A0II60-15

DIMENSIONS: MODEL SCALE

Flight dynamic pressure simulation - PSF 5

Cant angle - Deg.

Aft I 2

Outb oar d 20

Diameter - In.

Exit 0. 129

Throat O. 0465

Area- In 2

Exit 0.013

Throat 0. 002

Area ratio 7. 697

No. of nozzles 2

43
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TABLE III(Cont'd)

MODEL COMPONENT: NOZZLE - N44

GENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up

control to simulate reentry.

MODEL SCALE: 0.010

DRAWING NO.: SS-A01160-9

DIMENSIONS: MODEL SCALE

Flight dynamic pressure simulation - PSF 5

Cant angle - deg.

Aft 0

Outboard 0

Diameter, In.

Exit 0, 129

Throat 0. 0465

Area - In. 2

Exit 0. 013

Throat 0. 002

Area ratio 7. 697

No. of nozzles 2

44
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I TABLE III(Cont'd)

MOD[(L C0._CDON!_Yf:MPS NOZ/LLE3 - N 76

GEI_'Pw_LDESCRIFflON: Configuration 3A and 4 MPS nozzles

_ Two lower nozz1_s only. Same as N39. except MPS engine heatshields

added.

am.,,

MODEL SCALE: 0.010

D!L::IN]r_o]4BILR: VL?0-005106A

D73@_ION3: FLFLL SC_.LE MODEL SCALE

:4_',CIINO.

Length- In.
Gimbal Point to Exit Plane 157.00 1.570

Throat to Exit Plane 99. Z 0.992

_a:neter - In.

Exit 94. O0 O.940

Throat . 43,0 0.430
Inlet

_.rea - ft 2
Exit 48. 193 O. 0048
Throat

Gimbal P:;int(_,tation) In.
Upper ,'Iozzle

£
Y
Z

Lo'_r NozzleJ

< 1468. Z 14. 682

Y ±53.0 ±0. 530

Z ___ _ 3 427_

Nu!i Po.;ltion - DeS •

Upper Nozzle
Pitch

Y'aw

Lo_,'cr No,:z!e

Pitch I0 I0
Y'_" 3 °30' 3 °30'

i ORIGINAL PAGE IS
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TABLE Ill(Gont'd)

MO['ELCOMPONENT: R UDDER - R 5

GENERAL DESCRIPTION: Configuration 140C orbiter rudder (identical to

, cJnnfi£,,_'_tlr_n ]40A/BAzudder). . .

_m.,,

MODEL SGALE: 0.010

DRAWING NUMBER: VLTO-OOOI46B, -000095

DIMENSIONS: FULL-SCALE MODEL SCALE

Area - Ft2 I00.15 ..Oj.O0100. _.

Span (equivalent),In. 201.00 Z,OlO

Inb'd equivalent chord , In. 91.585 0,.916

Outb'd equivalent chord , In. 50.833 0.508

Ratio movable surface chord/
total surface chord

At Inb'd equiv, chord 0.400 0.400

At Outb'd equiv, chord O.400 O,400

Sweep Back Angles, degrees

Leading Edge

Tailing Edge 26.25 26.25

Hingel_rl_roductof area h c) 34.83 34.83

Area Moment (N_rm_l_,_x_i_gex_li_ Ft 3 610, 92 O, 0006

Mean Aerodynamic Chord, In. 73.2 0. 732

I
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I TABLE III(Cont'd)

MODEL COMPOt_I%IT: VERTICAL - V

GENERAL DESCRIPTION: Configuration 140C orbiter vertical tail (identicol

to configuration 140A/B vertic-a|tail}

MODEL SCALE: 0. 010 --

DP_'JING NI_R: VL70-000140C, -000146B

DLMENSIONS: FULL SCALE MODEL SCiLE

TOTeL DAT_

O

Area (%_ieo) - Ft'

Planfoza 413. 253 0.0_3
Span (Theo) - In. 315, 72 3. !57
Aapect Ratio I.675 I.675
Rate of Taper 0.507 0.507

Taper Ratio 0. 404 0. 404
Sweep-Back Angle'.;_Degrees.

Leading Edge __.__ O.q__ __, O0 Q.__
Traillr_j i',dge Z6. Z5 26. Z5

0.25 Elemen'_ L,_ne 41, 13 . 41, 13

ChordJ :

Root (Theo) ',P Z68.50 2. 685

Ti_ (Theo) ".,_P _ 1_ Olq5

_C 199.81 -___8__
Fu_. Sta. of .25 t&,C _ 14.634 .
W.P. c° .25 MAC 635.5Z 6.355

B.L. of .25 MAC 0,00 _0

_irfoii Sec 4[on

Leading Wed,e :,ngle -. Deg. 10.00 10. O0

Trailing Wedge /.nglc "- Deg. 14.92. 14.92
Leadirlg Edg,e Radiu.; __ 0.020___

Void Lre'._ 13. 17 0._._. 0_01_.33__

Blanketed Area 0.0 O. 0

Okl(;k\"kL PAr,,_,-

( '4U4I._ 47

' I

1977003190-051



t I'

\ i

TABLE III (Concluded)

.... -_?A.DES_,,_,'_ON: Corrflguration 4"- - i .......• IL

NOTE: Identical to W114 except airfoil thickness. Dihedral angle is a!on_

_,_ailinp ed__e of win[. Geometric_twist = O_

MO.DEL $CAL_E: O. 010 .

_S" _'_. DWG. N0. VL70-000140A t-000Z00

DIMENSIONS: FULL-SCALE MODEL SCALE _.

•O_AL DWA
•"Area iTneo.) Ft2

O!anform 26?0.O0 O.26_0
SDan ',Theo In. _ 9.367
Aspect Ratio Z,Z65 Z,Z65
Rate of Taper _ I.177
Taper Ratio _ 0.200 O.ZO0
Dihedral Angle, degrees _ _no
IncTdence /ingle,degrees O.500 O,500
Aerodynamic Twist, degrees
Sweep 3ack Angles, degrees

Leading Edge 45. 000 45,000
TraiIing Edge -i0..Q,5.(__ -.:3.Q__Q.SJ___
O.25 Element Line ..._2u%J,@2. __u%.__O.9_.__

Chords:
Root (Theo) B.P.O.O. 689.24. ,6.892.
Tip, (Theo) B.P. 137.85 l. 3.7.?
MAC __4J_4..BJ.- 4,74_
Fus. Sta. of .25 MAC I]___I_ _ __ ,t __

W.P. of ,?.5MAC _ ___B.L. of .Z5 MAC

EXPOSED DATA
Area "CTheo) FtZ I75I.50 O. I75
Span, (Theo) In. BPIo8ORIG_vAr 7Z0,6--'-'-'--"_'-7tZ07

Aspect Ratio O_/_Oo_L,_PAO_: _ _..._ _,059 ,
Taper Ratlo wuEi/_ O.Z45 0 t 245Chords

Root BPIO8 _ b.,,II
Tip 1.00 b _ l_ _7q

MAC _ 392.83 3.928

Fus. Sta. of .25 MAC _W.P. of .25 MAC
B.L. of .25 ,MAC 251_77 ?, _Ifq

Airfoil Section (Rockwell M_ NASA)
XXXX-64

Root b • , O. ll_ 0. 113
T

TII)b - O.IZO O. !20

Data for (I) of (2) Sides

Lead'ng !dge CufCm !,_ ._
olan#0-m Area ct...... i

Lea(_in_Edge lme.e-_ectsFus M, L, 0 Sta _ 5, 0oo
'.e_ ,'- Edae I-te_ect_ Wing 0 Sta 1924.0 I0_ 240

4S
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Table VI Stuwnary of Test Condltlons

,5e • 0" _BF • 0" .-

RC$ RUN a l_ Q C N | ;
ON/OFF NO. (PEG) MACH VSAR (lIDBi,;i) #/I_ L_

OFF Z 30 19.51 0.05111 0.09744 0. 1700 0.7030 4.61156

OFF 3 30 19.51 0.05243 0.09089 0.1579 0. 7723 4.7237

OFF 6 30 9.64 0.02495 0.4815 0.6663 0.7493 19.4142

OFF 15 29.97 9.62 0.02475 0,4664 0.6726 0.7501 19 5430

OFF 12 30 10.46 0.01034 1.507 2.159 0.7427 62. '!27

ON 4 30 19.58 0.05136 0.1731 0.li_0 0. 7490 4. 8742

ON 5 30 19.32 0.05111 0. 1147 0.1664 0.6576 4.2387

ON 7 30 19. 16 0.04855 0.1232 0.1856 0.7039 i_.0606

ON 8 Z9.qill 9.59 0.02438 0.5022 0.6963 0.7Z40 19.5277

ON 14 29.98 9.56 O. 02435 O. 5132 0.6937 0.7529 20. 2313

ON 13 29.98 10.53 0.01036 1.674 2.2(.'0 0.7699 6';6102

.51
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TABLE VII

RUN SUMMARY

= 30°

NominalPur_ _/f_ Pc
NO. M x XIO_ (Psla) Remarks

19.h 0.09 0 Data traces not steady; suspect Val-

cor valve inadvertently actuated

19.4 o.o9 0

4. 19.h 0.09 175 RCS plen,an pressure did not stabilize

during run

5 19.4 0.09 175

6 9.6 0.084 O Low amplitude data traces on Y, n, i,

A; amplifier gains too low

7 19.4 O.09 175

8 9.6 O.08h 410

12 10.5 0._5 0

IR 10.5 0.65 1530 Low amplitude data trace on yawing

moment; amplifier gain too low

14 9.6 O.08h 690

15 9.6 0.084 0 RCS hardware removed to determine
flow interference effects

}b_ns I, iO, II: No data; data _equlsition system trigger problems.
_n 9: Myl_r :!laphr_ apparently struck model.

" 52
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.......... CANTED PITCH NOZZLf_

N4 3

CANTED SURFACE

, LI_ > tt,':: ..... /

/ FI _t'C,_ _OZZLE,
_ /

",." , / NO C/'l.Tr

'" 4

--. ¢
\ /
\ /

-4-t_--_ THROAT D_"I_

_. RCg Nozzle Configurations

F_Kure 2. Model Sketches (Cont'd)
55
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a. Ri,_ht sf,te view hi' Calsp'tn "E" f'or-e -ql._n_o assem"-l,,' w_'h
a,'_','lo rqtlon b,'aokot,.

i Fi;":;'o _-. Model Photoaraphr

6] _I_IGI'\'ALPAGE
OV PoOR QU,_
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b. Top v_ev of Calsl_n "E" Force V,alance qs,_em_.lv _n,! _,'"el_'_,i_, ''
bracket.

F1_,ur_._. Model Photocr_phs - (Cont'-l)

62
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e. [_t't slde view of Calspan "E" force b_laneP _s_m_ly _n_ _-

celer_tlon bracket.
FIKure _. Mo_el Photographs - _Pont',])

,s3 '!"_';A-I, _,\GE _
, _ ','__,'!,i _,,_t,dSP ¢"
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d. Top vlew o£ model show, rip wln_ R'rel,,ro-,et_'-, or-:_ri "'F-

li£'iers, and Field E_'£eets T-_nsl,_ter,_ {_-'r.:]).

Fi_,ure _. Model PhotoFraph_ - {Cont'J)

64
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f. Bottom view of model showin_ static, pr.r_u_- or:"i-,::, _"

io_d pan hole's, _nd trar_sdt_cer mo_qt '_ - P_:

Figure _. Mode] Photo_rqphs - (('ont'J _

66
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g. Top view showing model mounted on sting-balance assembly and
cavity pressure transducer on forward right side of balance
housing.

Figure 3. Model Photographs - (Cont'd) O/_]G/]VA%
67 _)_ 'POOR ,.,/_,'tq/::_,;

vu,V_4
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h. Side view o9 Model 51-0 mounted on Calsp_n stln<, w_thout non-

metric RCS hsrdware installed. I
Figure 3. Model Photographs - (Cont'd)

68
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I. Top view of Model 51-O mounted on Calspan sting, without non-

i metric RCS hardware installed.
Figure 3. Model Photographs - (Cont'd)

69 ',. <_,>C/ki,_.AG__, U5

I
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J. Close-u_ of aft end of Model 51-0 showing clearance between
sting and HPS nozzles. NOTE: non-metric RCS hardvare not
installed. J

Figure 3. Model Photographs - (Con%'d)

7O
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_nK from le!_t to r!=ht, "_i" nczT_.e _n ,_ tr.rt ::e'-t".o: , _chl_._ren

I equipment. _nd _tn_lo_- c_put_r.
F_u"_ 3. Model Photo_',r:Lphs - (C_:It'_)

OIHG[NALPAGE IB
71 0_' Poor QUAL_
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i. LeFt slde view of pltot rake and Model 51-O (a - _O°) _n_ _;C"

hardware, Inst&lled in Calspan _8" I_AT. I

Figure _, Model Photo:r_phs - (Cont'd)

72
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1

m. 31o_.e-up,'!,._wof" l_f% si,ie o._ Model 51-0 _n'_R[',':.ha_,lw%re,
In_t-_ll_,.:,_:.C,_I.s_D,_nh,_",,_}{ST.

F_.r:'n'_" :,. Mo'l,'lPhotocr._phs - (Cort' 1)

73 UK[GtNAL gAGE 1_

OF £0ot'_ QU,Xi/I_

I
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n. Rtght _ide view o_ MoJ_l 51-0 _n£ _C.£hardware, :nstql:,.d _.r

CalsDan Ida"MST. !
F_gure _. Model Photo_raph_ - (Cont'd)

74
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o. _lght side viev of pitot rake and Model 51-O (vtth RCS hard-
_ rare removed) installed in Calspsn 1_8" lq_.

, Figure 3. Model Photographs - (Cont'd) ORI(;I,\'AL PAGt._ IS

75 OF POOR QU&/Ar./_,
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"" ," of Nod,'l "!-a ,. ,,._ "+.t2.BC:;hardware in Cals;_n _8" _ST. NOTE:

i .....,..nl,m'_ t:,',__nd supply hose. Valcor valve, shown _unted

":. j, on t;tIny,, w'*_.s1tier moved to separate bracket.

• J _';z'_r.:. ':eI,,IPh_t_r_p's - (C_nt'4) (d_/(;l\,_, ;

OC,U2_
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'. V!_a 1ooklnR upstream f'romR_; pl(num tsnk, _hovlng V_Icor
,_,tl'zeon _ep_te bracket ,_n(l£1ex _o_e £_m v_Ive to model

Flrure 2, Model Phot_v_l)h,_ - (Cnnelu_ed)
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i . :'_l: , l i ()" Test C,_n,_itiorl li, • .......
, e,,{_, :>_, ,,. ',',,7/1 i_'rpn Photo_-raphs

83 _"'"'_'_'tLl',,t,_;IS_' e,,
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. '' q'_ ' L/H P_t:'h _own J_t

:"'.,-'_-, ',. ','_!i,-,:'_r Pho,_,n,_._qt)h: ' - (,_mt"_._
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) _'. }_un5,a = "_0°, Test Condition h, L/H Pitch Down Jet.
F{_-u_ _. %_inlieren Photo_'_phs - (Cont'4)

,_ _,,, ! t_,

1977003190-089



T ! I
1 II ,!

d. Run 6, a = 30°, Test Condition 7, RCS off.
Figure 5. Schlleren Photographs - (Cont'4)

86
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e, Run 7, _z=30°, Test Conditon 4, R/M Pitch Up Jet
' Figure 5. Schlieren Photo_,'aphs- (Cont'd)

• ' , f _ t, -_(,
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f. Run 8, a=30 °, Test Condition 2, R/H Pitch Up Jet.

Figure 5. Schlieren Photographs - (Cont'a)

88
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g. Run9, a =30°, Test Cond_tlon2, L/R Pitch Do_rnJet
FiKure5. SchllerenPhotographs- (toni'd)

8_ OEIGIlqAl; pAGE 15
OFpOORQUALITY
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h. Run 10, a =30° Test Coudltlom I, RCS off
Figure 5. Sch,_.lerenPhotoR_aphs - (Cont'd)

90
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i. Run ii,a =30°, Test CondLtion Ip RCS ot'f.
, Flgure 5. Schlleren PhotoF,raphs - (Cont'd)

91 _q_,_i;_N.\_;PAGE IB

I
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J. Run 12, u =_0°, Test Condition 1, R_ o£,e.
Figure 5. Schlieren Photoo;r_p.hs - (Cont.'d)

92
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k. Run I_, "=30 v, Tes% Cond1_.'on I, L/ll Pit,-h _._w_,Jet

Figure 5. Sehlleren Photographs - (C,_nte_'p

93 ; 1 ?_'h',%
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, i)j_,e,_tImpin_:emcnt_m I02, RC_ .L/Hp(tch Down Jet
Ftcure 5, f_(,hlleren phnto_ra!_hs - (C.nn_;'d)

96

1 i , , , I
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o. Direct Impingement Run lOV, _CS,H/H Pitch Up Jet.

F_gnre 5. Schlleren Phc,tographs - (Concl_]ded)
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F_gure 7. M_ch No. and Reynolds No. effect on right han_ up-
firing Jet/aero force interaction.
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Figure 8. Mach No. and Reynolds No. effect on lef+_ hand down-

flr_ng ,let/aero moment Interaction.
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Figure 9. Math No. and Reynolds No. Effect on Left-hand

De;w_.-firing Jet/Aero Vorce Interaction
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